什么是npy文件,为什么要用npy格式保存文件?
npy格式的文件是什么?为什么要用npy格式保存文件?
·
一、官方文档(中文)
二、官方文档(英文)
三、为什么要用npy文件保存文件
- A LOT faster, also notice that we didn’t need to reshape the data since that information was contained in the .npy file.(速度更快)
- Another “minor” feature of using .npy files is the reduced storage the file occupies. In this case it’s more than a 50% reduction in size. This can wary a lot though but in general the .npy files are more storage friendly.(占用内存更少)
四、读取和保存
(1)加载npy文件,并将npy文件写入一个txt文件
import numpy as np
test=np.load('./bvlc_alexnet.npy',encoding = "latin1") #加载文件
doc = open('1.txt', 'a') #打开一个存储文件,并依次写入
print(test, file=doc) #将打印内容写入文件中
(2)保存npy文件
#显示字典
print(train_dataset.class_to_idx)
idx_to_labels = {y:x for x,y in train_dataset.class_to_idx.items()}#获取dict:train_dataset.class_to_idx的keys和values
print(idx_to_labels)
np.save('idx_to_labels.npy',idx_to_labels)
np.save('labels_to index.npy',train_dataset.class_to_idx)
(3)结构解析
import numpy as np
from numpy import * #使用numpy的属性且不需要在前面加上numpy
import tensorflow as tf
#模型文件(.npy)部分内容如下:由一个字典组成,字典中的每一个键对应一层网络模型参数。(包括权重w和偏置b)
a = {'conv1':[array([[1,2],[3,4]],dtype=float32),array([5,6],dtype=float32)],'conv2':[array([[1,2],[3,4]],dtype=float32),array([5,6],dtype=float32)]}
conv1_w = a['conv1'][0]
conv1_b = a['conv1'][1]
conv2_w = a['conv2'][0]
conv2_b = a['conv2'][1]
print(conv1_w)
print(tf.Variable(conv1_w))
print(conv1_b)
print(tf.Variable(conv1_b))
更多推荐
所有评论(0)