ARMA(1,1)的参数估计——公式推导
利用梯度下降求解便可得参数估计。利用梯队下降便可解得参数估计。的条件下,我们可以逐步推出。
ARMA(1,1)
y t = ϕ 0 + ϕ 1 y t − 1 + θ 1 ϵ t − 1 + ϵ t y_t=\phi_0+\phi_1y_{t-1}+\theta_1\epsilon_{t-1}+\epsilon_t yt=ϕ0+ϕ1yt−1+θ1ϵt−1+ϵt其中, ϵ t ∼ i . i . d . N ( 0 , σ ϵ 2 ) \epsilon_t\mathop{\sim}\limits^{i.i.d.}N(0,\sigma_\epsilon^2) ϵt∼i.i.d.N(0,σϵ2)
极大似然估计
假设观测数据集为 { y 1 , … , y T } \{y_1,\ldots,y_T\} {y1,…,yT},令 θ = ( ϕ 0 , ϕ 1 , θ 1 , σ ϵ 2 ) ′ \theta=(\phi_0,\phi_1,\theta_1,\sigma_\epsilon^2)^\prime θ=(ϕ0,ϕ1,θ1,σϵ2)′,
则有似然函数:
L ( θ ) = f θ ( y 1 , … , y T ) = ∏ t = 2 T f θ ( y t ∣ y t − 1 ) f θ ( y 1 ) \begin{align*} L(\theta)&=f_\theta(y_1,\ldots,y_T) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|y_{t-1})f_\theta(y_1) \end{align*} L(θ)=fθ(y1,…,yT)=t=2∏Tfθ(yt∣yt−1)fθ(y1)其中, y 1 ∼ N ( ϕ 0 1 − ϕ 1 , ( θ 1 2 + 1 ) σ ϵ 2 1 − ϕ 1 2 ) y_1\sim N(\dfrac{\phi_0}{1-\phi_1},\dfrac{(\theta_1^2+1)\sigma_\epsilon^2}{1-\phi_1^2}) y1∼N(1−ϕ1ϕ0,1−ϕ12(θ12+1)σϵ2)
- y 1 y_1 y1服从正态分布?
ARMA(1,1)平稳,则 ∣ ϕ 1 ∣ < 1 |\phi_1|<1 ∣ϕ1∣<1
y t = ϕ 0 + ϕ 1 y t − 1 + θ 1 ϵ t − 1 + ϵ t = ϕ 0 + ϕ 1 ϕ 0 + ϕ 1 2 y t − n + ϕ 1 θ 1 ϵ t − 2 + ϕ 1 ϵ t − 1 + θ 1 ϵ t − 1 + ϵ t = … = ϕ 0 ∑ i = 0 n − 1 ϕ 1 i + ϕ 1 n y t − n + ∑ i = 2 n ϕ 1 i − 1 θ 1 ϵ t − i + ∑ i = 1 n − 1 ϕ 1 i ϵ t − i + θ 1 ϵ t − 1 + ϵ t \begin{align*} y_t&=\phi_0+\phi_1y_{t-1}+\theta_1\epsilon_{t-1}+\epsilon_t \\ &=\phi_0+\phi_1\phi_0+\phi_1^2y_{t-n}+\phi_1\theta_1\epsilon_{t-2}+\phi_1\epsilon_{t-1}+\theta_1\epsilon_{t-1}+\epsilon_t \\ &=\ldots \\ &=\phi_0\sum\limits_{i=0}^{n-1}\phi_1^i+\phi_1^ny_{t-n}+\sum\limits_{i=2}^{n}\phi_1^{i-1}\theta_1\epsilon_{t-i}+\sum\limits_{i=1}^{n-1}\phi_1^i\epsilon_{t-i}+\theta_1\epsilon_{t-1}+\epsilon_t \end{align*} yt=ϕ0+ϕ1yt−1+θ1ϵt−1+ϵt=ϕ0+ϕ1ϕ0+ϕ12yt−n+ϕ1θ1ϵt−2+ϕ1ϵt−1+θ1ϵt−1+ϵt=…=ϕ0i=0∑n−1ϕ1i+ϕ1nyt−n+i=2∑nϕ1i−1θ1ϵt−i+i=1∑n−1ϕ1iϵt−i+θ1ϵt−1+ϵt当 n → ∞ n\rightarrow\infty n→∞时, ϕ 1 n y t − 2 → 0 \phi_1^ny_{t-2}\rightarrow0 ϕ1nyt−2→0,故 y t y_t yt服从正态分布,即有 y 1 y_1 y1服从正态分布- E y 1 = ϕ 0 1 − ϕ 1 Ey_1=\dfrac{\phi_0}{1-\phi_1} Ey1=1−ϕ1ϕ0
令 μ = E y t \mu=Ey_t μ=Eyt
μ = ϕ 0 + ϕ 1 μ + 0 + 0 μ = ϕ 0 1 − ϕ 1 \begin{align*} \mu&=\phi_0+\phi_1\mu+0+0 \\ \mu&=\dfrac{\phi_0}{1-\phi_1} \end{align*} μμ=ϕ0+ϕ1μ+0+0=1−ϕ1ϕ0- V a r ( y y ) = ( θ 1 2 + 1 ) σ ϵ 2 1 − ϕ 1 2 Var(y_y)=\dfrac{(\theta_1^2+1)\sigma_\epsilon^2}{1-\phi_1^2} Var(yy)=1−ϕ12(θ12+1)σϵ2
令 σ 2 = V a r ( y t ) \sigma^2=Var(y_t) σ2=Var(yt)
σ 2 = 0 + ϕ 1 2 σ 2 + θ 1 2 σ ϵ 2 + σ ϵ 2 σ 2 = ( θ 1 2 + 1 ) σ ϵ 2 1 − ϕ 1 2 \begin{align*} \sigma^2&=0+\phi_1^2\sigma^2+\theta_1^2\sigma_\epsilon^2+\sigma_\epsilon^2 \\ \sigma^2&=\dfrac{(\theta_1^2+1)\sigma_\epsilon^2}{1-\phi_1^2} \end{align*} σ2σ2=0+ϕ12σ2+θ12σϵ2+σϵ2=1−ϕ12(θ12+1)σϵ2
y t ∣ y t − 1 ∼ N ( ϕ 0 + ϕ 1 y t − 1 , ( θ 1 2 + 1 ) σ ϵ 2 ) y_t|y_{t-1}\sim N(\phi_0+\phi_1y_{t-1},(\theta_1^2+1)\sigma_\epsilon^2) yt∣yt−1∼N(ϕ0+ϕ1yt−1,(θ12+1)σϵ2)
故似然函数便可写成下式:
L ( θ ) = ∏ t = 2 T 1 2 π ( θ 1 2 + 1 ) σ ϵ 2 e x p ( − ( y t − ϕ 0 − ϕ 1 y t − 1 ) 2 2 ( θ 1 2 + 1 ) σ ϵ 2 ) 1 2 π ϕ 0 / ( 1 − ϕ 1 ) e x p ( − ( y 1 − ϕ 0 / ( 1 − ϕ 1 ) ) 2 2 ( θ 1 2 + 1 ) σ ϵ 2 / ( 1 − ϕ 1 2 ) ) \begin{align*} L(\theta)&=\prod\limits_{t=2}^T\dfrac{1}{\sqrt{2\pi(\theta_1^2+1)\sigma_\epsilon^2}}exp\left( -\dfrac{(y_t-\phi_0-\phi_1y_{t-1})^2}{2(\theta_1^2+1)\sigma_\epsilon^2} \right) \dfrac{1}{\sqrt{2\pi\phi_0/(1-\phi_1)}}exp\left( -\dfrac{(y_1-\phi_0/(1-\phi_1))^2}{2(\theta_1^2+1)\sigma_\epsilon^2/(1-\phi_1^2)} \right) \end{align*} L(θ)=t=2∏T2π(θ12+1)σϵ21exp(−2(θ12+1)σϵ2(yt−ϕ0−ϕ1yt−1)2)2πϕ0/(1−ϕ1)1exp(−2(θ12+1)σϵ2/(1−ϕ12)(y1−ϕ0/(1−ϕ1))2)对 − l n L ( θ ) -lnL(\theta) −lnL(θ)利用梯度下降求解便可得参数估计
条件似然估计
在给定 y 0 y_0 y0和 ϵ 0 \epsilon_0 ϵ0的条件下,我们可以逐步推出 ϵ 1 , … , ϵ T − 1 \epsilon_1,\ldots,\epsilon_{T-1} ϵ1,…,ϵT−1,即 ϵ 1 , … , ϵ T − 1 \epsilon_1,\ldots,\epsilon_{T-1} ϵ1,…,ϵT−1也给定了
ϵ 1 = y 1 − ( ϕ 0 + ϕ 1 y 0 + θ 1 ϵ 0 ) \epsilon_1=y_1-(\phi_0+\phi_1y_0+\theta_1\epsilon_0) ϵ1=y1−(ϕ0+ϕ1y0+θ1ϵ0)
… \ldots …
ϵ T − 1 = y T − 1 − ( ϕ 0 + ϕ 1 y T − 1 + θ 1 ϵ T − 2 ) \epsilon_{T-1}=y_{T-1}-(\phi_0+\phi_1y_{T-1}+\theta_1\epsilon_{T-2}) ϵT−1=yT−1−(ϕ0+ϕ1yT−1+θ1ϵT−2)
故似然函数如下:
L ( θ ) = f θ ( y 1 , … , y T ∣ y 0 , ϵ 0 ) = f θ ( y 1 , … , y T ∣ y 0 , ϵ 0 , … , ϵ T − 1 ) = ∏ t = 1 T f θ ( y t ∣ y t − 1 , ϵ t − 1 ) \begin{align*} L(\theta)&=f_\theta(y_1,\ldots,y_T|y_0,\epsilon_0) \\ &=f_\theta(y_1,\ldots,y_T|y_0,\epsilon_0,\ldots,\epsilon_{T-1}) \\ &=\prod\limits_{t=1}^Tf_\theta(y_t|y_{t-1},\epsilon_{t-1}) \end{align*} L(θ)=fθ(y1,…,yT∣y0,ϵ0)=fθ(y1,…,yT∣y0,ϵ0,…,ϵT−1)=t=1∏Tfθ(yt∣yt−1,ϵt−1)其中, y t ∣ y t − 1 , ϵ t − 1 ∼ N ( ϕ 0 + ϕ 1 y t − 1 + θ 1 ϵ t − 1 , σ ϵ 2 ) y_t|y_{t-1},\epsilon_{t-1}\sim N(\phi_0+\phi_1y_{t-1}+\theta_1\epsilon_{t-1},\sigma_\epsilon^2) yt∣yt−1,ϵt−1∼N(ϕ0+ϕ1yt−1+θ1ϵt−1,σϵ2)
故似然函数可推导如下:
L ( θ ) = ∏ t = 1 T 1 2 π σ ϵ 2 e x p ( − ( y t − ϕ 0 − ϕ 1 y t − 1 − θ 1 ϵ t − 1 ) 2 2 σ ϵ 2 ) L(\theta)=\prod\limits_{t=1}^T\dfrac{1}{\sqrt{2\pi\sigma_\epsilon^2}}exp\left( -\dfrac{(y_t-\phi_0-\phi_1y_{t-1}-\theta_1\epsilon_{t-1})^2}{2\sigma_\epsilon^2} \right) L(θ)=t=1∏T2πσϵ21exp(−2σϵ2(yt−ϕ0−ϕ1yt−1−θ1ϵt−1)2)
最终对 − l n L ( θ ) -lnL(\theta) −lnL(θ)利用梯队下降便可解得参数估计。
更多推荐
所有评论(0)