python深度学习之视频修复系统的应用案例
视频修复技术:深度学习驱动的画质提升实践技术概述视频修复旨在通过深度学习技术(如GAN、CNN、Transformer)修复视频中的噪声、模糊、低分辨率等问题,涵盖去噪、超分辨率重建、动态对象移除等任务。其核心在于时空联合建模:空间修复模块(如EDSR、GFPGAN)处理单帧细节,时序建模模块(如3D CNN、SwinTransformer)捕捉帧间运动一致性,最终实现动态场景的高效修复
·
python深度学习之视频修复系统的应用案例
转载请标明出处:
https://dujinyang.blog.csdn.net/
本文出自:【奥特曼超人的博客】
视频修复:从图像修复到动态场景的深度学习实践
1. 引言
随着视频内容的爆炸式增长(如监控录像、老电影数字化、虚拟现实内容),视频修复技术成为提升画质、延长内容生命周期的关键手段。
视频修复的目标包括:
• 去噪:消除摄像头抖动、压缩伪影、电子噪声。
• 超分辨率重建:从低分辨率视频恢复高清画面。
• 运动模糊修复:消除快速移动物体的模糊痕迹。
• 动态对象移除:修复被遮挡或侵入性物体(如水印、人物)。
传统方法(如中值滤波、插值法)效果有限,而深度学习通过建模复杂时空关系,显著提升了修复效果。
2. 数据预处理
2.1 自定义数据集类
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, ToTensor, Resize, RandomAdjustBrightness
class VideoInpaintingDataset(Dataset):
def __init__(self, video_path, mask_path=None, transform=None):
self.video = cv2.VideoCapture(video_path)
self.masks = None
if mask_path:
self.mask_video = cv2.VideoCapture(mask_path)
self.transform = transform
def __len__(self):
return int(self.video.get(cv2.CAP_PROP_FRAME_COUNT))
def __getitem__(self, idx):
success, frame = self.video.read()
if not success:
raise StopIteration
if self.masks:
success_mask, mask = self.mask_video.read()
if not success_mask:
mask = np.zeros_like(frame, dtype=np.uint8)
# 随机遮挡区域dujinyang
h, w = frame.shape[:2]
x = np.random.randint(0, w//2)
y = np.random.randint(0, h//2)
mask[y:y+h//2, x:x+w//2] = 255
frame = frame * (1 - mask/255)
# 添加噪声
noise = np.random.normal(0, 25, frame.shape).astype(np.uint8)
frame = cv2.add(frame, noise)
if self.transform:
frame = self.transform(frame)
return frame
2.2 数据增强与加载
transform = Compose([
Resize((256, 256)),
RandomAdjustBrightness(0.2),
ToTensor(),
lambda x: x * 2 - 1 # 归一化到 [-1, 1]
])
# 数据处理部分-dujinyang
dataset = VideoInpaintingDataset(
video_path="data/input_video.mp4",
mask_path="data/mask_video.mp4",
transform=transform
)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
3. 模型定义
3.1 空间修复网络(EDSR)
import torch.nn as nn
import torch.nn.functional as F
class EDSR(nn.Module):
def __init__(self, scale_factor=4):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.res_blocks = nn.Sequential(*[
nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1)
) for _ in range(16)
])
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.upsample = nn.Sequential(
nn.Conv2d(64, 64 * (scale_factor**2), kernel_size=3, padding=1),
nn.PixelShuffle(scale_factor),
nn.Conv2d(64, 3, kernel_size=3, padding=1)
)
def forward(self, x):
residual = x
x = F.relu(self.conv1(x))
x = self.res_blocks(x)
x = self.conv2(x)
x += residual
x = self.upsample(x)
return x
3.2 时序建模网络(3D CNN)
class TemporalModel(nn.Module):
def __init__(self):
super().__init__()
self.conv3d = nn.Sequential(
nn.Conv3d(3, 64, kernel_size=(3, 3, 3), padding=1),
nn.ReLU(),
nn.Conv3d(64, 64, kernel_size=(3, 3, 3), padding=1),
nn.ReLU(),
nn.Conv3d(64, 3, kernel_size=(3, 3, 3), padding=1)
)
def forward(self, x):
x = x.permute(0, 2, 1, 3, 4) #dujinyang- 调整维度为 (B, C, T, H, W)
x = self.conv3d(x)
return x
3.3 完整修复网络
class VideoRestorationNet(nn.Module):
def __init__(self):
super().__init__()
self.spatial_net = EDSR()
self.temporal_net = TemporalModel()
def forward(self, frames):
spatial_out = []
for t in range(frames.shape[1]):
spatial_out.append(self.spatial_net(frames[:, t]))
spatial_out = torch.stack(spatial_out, dim=1)
temporal_out = self.temporal_net(spatial_out)
return temporal_out
4. 训练流程
4.1 损失函数与优化器
import torch.optim as optim
model = VideoRestorationNet()
criterion = nn.MSELoss()
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-5)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5)
4.2 训练循环
num_epochs = 50
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):
model.train()
total_loss = 0.0
for batch_idx, frames in enumerate(dataloader):
frames = frames.to(device)
restored = model(frames)
loss = criterion(restored, frames)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}")
scheduler.step(avg_loss)
5. 实时推理优化
5.1 模型导出为ONNX
import torch.onnx
dummy_input = torch.randn(1, 5, 3, 256, 256).to(device)
torch.onnx.export(
model,
dummy_input,
"video_restoration.onnx",
opset_version=12,
input_names=["input"],
output_names=["output"]
)
5.2 使用TensorRT加速推理
import tensorrt as trt
def build_engine(onnx_path):
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network()
parser = trt.OnnxParser(network, TRT_LOGGER)
with open(onnx_path, 'rb') as model:
if not parser.parse(model.read()):
print("Failed to parse ONNX model")
return None
engine = builder.build_cuda_engine(network)
return engine
def infer(engine, input_data):
context = engine.create_execution_context()
inputs, outputs, bindings, stream = allocate_buffers(engine)
inputs[0].host = input_data.astype(np.float32)
trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)
return trt_outputs[0].reshape(-1, 3, 256, 256)
6. 完整项目结构
video_restoration/
├── data/
│ ├── input_video.mp4
│ └── mask_video.mp4
├── models/
│ ├── edsr.py
│ └── temporal_model.py
├── train.py
├── infer.py
└── requirements.txt
7. 关键优化技巧
- 混合精度训练:使用
torch.cuda.amp
加速训练。 - 帧采样策略:随机采样连续帧或关键帧。
- 边缘填充:处理视频边缘的无效区域。
- 多GPU训练:使用
DataParallel
或DistributedDataParallel
。
其它方面可看:
《人工智能AI的优化与实际应用(Optimization)》
感兴趣的后续可以 关注专栏或者公众号 — 《黑客的世界》
作者:奥特曼超人Dujinyang
来源:CSDN
原文:https://dujinyang.blog.csdn.net/
版权声明:本文为博主杜锦阳原创文章,转载请附上博文链接!
更多推荐
所有评论(0)