1. 矩阵和向量

1.1 矩阵

1402137194914719182114371448
<script type="math/tex; mode=display" id="MathJax-Element-1"> \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 &1448 \end{bmatrix} </script>

这个是4x2的矩阵,即4行2列。矩阵的维度即行数乘以列数。

矩阵的元素(矩阵项):

A=1402137194914719182114371448
<script type="math/tex; mode=display" id="MathJax-Element-2"> A=\begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 &1448 \end{bmatrix} </script>
Ai,j <script type="math/tex" id="MathJax-Element-3">A_{i,j}</script>指第i行,第j列的元素。

1.2 向量

向量是一种特殊的矩阵,此处我们一般指列向量,以下是四维的列向量。

14021371949147
<script type="math/tex; mode=display" id="MathJax-Element-4"> \begin{bmatrix} 1402 \\ 1371 \\ 949 \\ 147 \end{bmatrix} </script>

1索引向量:

y=y1y2y3y4
<script type="math/tex; mode=display" id="MathJax-Element-5"> y=\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} </script>
0索引向量:
y=y0y1y2y3
<script type="math/tex; mode=display" id="MathJax-Element-6"> y=\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} </script>

2. 加法和标量乘法

2.1 加法

对应行列数相等的元素相加。例如

123051+4200.551=5430.5102
<script type="math/tex; mode=display" id="MathJax-Element-7"> \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix}+\begin{bmatrix} 4 & 0.5 \\ 2 & 5 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 5 & 0.5 \\ 4 & 10 \\ 3 & 2 \end{bmatrix} </script>

2.2 标量乘法

每个元素乘以标量得到对应元素。例如

3×123051=3690153
<script type="math/tex; mode=display" id="MathJax-Element-8"> 3\times\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix}=\begin{bmatrix} 3 & 0 \\ 6 & 15 \\ 9 & 3 \end{bmatrix} </script>

3. 矩阵向量乘法

m × <script type="math/tex" id="MathJax-Element-9">\times</script>n的矩阵乘以n × <script type="math/tex" id="MathJax-Element-10">\times</script>1的向量,得到m × <script type="math/tex" id="MathJax-Element-11">\times</script>1的向量,例如:

142301×[15]=1×1+3×54×1+0×52×1+1×5=1647
<script type="math/tex; mode=display" id="MathJax-Element-12"> \begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 3 \times 5 \\ 4 \times 1 + 0 \times 5 \\ 2 \times 1 + 1 \times 5 \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ 7 \end{bmatrix} </script>
该乘法规则即将m × <script type="math/tex" id="MathJax-Element-13">\times</script>n的每行 行向量与n × <script type="math/tex" id="MathJax-Element-14">\times</script>1的 列向量对应 元素相乘的和,作为结果向量m × <script type="math/tex" id="MathJax-Element-15">\times</script>1的对应元素。

4. 矩阵乘法

m × <script type="math/tex" id="MathJax-Element-16">\times</script>n矩阵乘以n × <script type="math/tex" id="MathJax-Element-17">\times</script>o矩阵变成m × <script type="math/tex" id="MathJax-Element-18">\times</script>o矩阵。

[a0a2a1a3]×[b0b2b1b3]=[a0×b0+a1×b2a2×b0+a3×b2a0×b1+a1×b3a2×b1+a3×b3]=[c0c2c1c3]
<script type="math/tex; mode=display" id="MathJax-Element-19"> \begin{bmatrix} a_0 & a_1 \\ a_2 & a_3 \end{bmatrix} \times \begin{bmatrix} b_0 & b_1 \\ b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_0 \times b_0 + a_1 \times b_2 & a_0 \times b_1 + a_1 \times b_3 \\ a_2 \times b_0 + a_3 \times b_2 & a_2 \times b_1 + a_3 \times b_3 \\ \end{bmatrix} = \begin{bmatrix} c_0 & c_1 \\ c_2 & c_3 \end{bmatrix} </script>

即:

c0=a0×b0+a1×b2c1=a0×b1+a1×b3c2=a2×b0+a3×b2c3=a2×b1+a3×b3
<script type="math/tex; mode=display" id="MathJax-Element-20"> c_0 = a_0 \times b_0 + a_1 \times b_2 \\ c_1 = a_0 \times b_1 + a_1 \times b_3 \\ c_2 = a_2 \times b_0 + a_3 \times b_2 \\ c_3 = a_2 \times b_1 + a_3 \times b_3 </script>

该乘法规则即将m × <script type="math/tex" id="MathJax-Element-21">\times</script>n的每行行向量与n × <script type="math/tex" id="MathJax-Element-22">\times</script>o的列向量对应元素相乘的和,作为结果向量m × <script type="math/tex" id="MathJax-Element-23">\times</script>o的对应元素。

矩阵乘以向量n × <script type="math/tex" id="MathJax-Element-24">\times</script>1可以理解为向量是o=1的特殊的矩阵。

5. 矩阵乘法的性质

矩阵乘法满足结合律:A × <script type="math/tex" id="MathJax-Element-25">\times</script>(B × <script type="math/tex" id="MathJax-Element-26">\times</script>C)=(A × <script type="math/tex" id="MathJax-Element-27">\times</script>B) × <script type="math/tex" id="MathJax-Element-28">\times</script>C

矩阵乘法不满足交换律:A × <script type="math/tex" id="MathJax-Element-29">\times</script>B≠B × <script type="math/tex" id="MathJax-Element-30">\times</script>A

单位矩阵

矩阵中的单位矩阵就像整数1,矩阵乘以单位矩阵等于矩阵本身。单位矩阵即矩阵斜对角元素都为1,其他元素为0,单位矩阵行数等于列数,是个方阵,一般用IE表示。例如:

100010001
<script type="math/tex; mode=display" id="MathJax-Element-31"> \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} </script>
对于单位矩阵,A × <script type="math/tex" id="MathJax-Element-32">\times</script>I=I × <script type="math/tex" id="MathJax-Element-33">\times</script>A=A

6. 逆矩阵和转置矩阵

逆矩阵

矩阵的逆:如A是一个m × <script type="math/tex" id="MathJax-Element-34">\times</script>m的矩阵(方阵),如果有逆矩阵,则:

AA 1 <script type="math/tex" id="MathJax-Element-35">^{-1}</script>=A 1 <script type="math/tex" id="MathJax-Element-36">^{-1}</script>A=I

转置矩阵

设A是一个m × <script type="math/tex" id="MathJax-Element-37">\times</script>n阶的矩阵,第i行j列的元素是a(i,j),即A=a(i,j)。则A的转置矩阵为n × <script type="math/tex" id="MathJax-Element-38">\times</script>m阶的矩阵B,满足B=a(j,i),即b(i,j)=a(i,j),B的第i行第j列的元素是A的第j行第i列的元素,记A T <script type="math/tex" id="MathJax-Element-39">^T</script>=B(或A <script type="math/tex" id="MathJax-Element-40">^{'}</script>=B)。

可以理解为转置矩阵即将原矩阵按斜对角线镜面翻转。例如:

acebdfT=[abcdef]
<script type="math/tex; mode=display" id="MathJax-Element-41"> \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} ^{T} = \begin{bmatrix} a & c & e \\ b & d & f \\ \end{bmatrix} </script>
矩阵转置的基本性质

(A±B) T <script type="math/tex" id="MathJax-Element-42">^{T}</script>=A T <script type="math/tex" id="MathJax-Element-43">^{T}</script> ± B T <script type="math/tex" id="MathJax-Element-44">^T</script>

(A × <script type="math/tex" id="MathJax-Element-45">\times</script>B) T <script type="math/tex" id="MathJax-Element-46">^T</script>=B T× <script type="math/tex" id="MathJax-Element-47">^T\times</script>A T <script type="math/tex" id="MathJax-Element-48">^T</script>

(A T <script type="math/tex" id="MathJax-Element-49">^T</script>) T <script type="math/tex" id="MathJax-Element-50">^T</script>=A

(KA) T <script type="math/tex" id="MathJax-Element-51">^T</script>=KA T <script type="math/tex" id="MathJax-Element-52">^T</script>

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐