convert.py

import torch
from models.models import Darknet, load_darknet_weights


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cfg = 'cfg/yolov4.cfg'
weights = 'weights/yolov4.weights'
model = Darknet(cfg).to(device)
load_darknet_weights(model, weights)
chkpt = {'epoch': -1, 'best_loss': None, 'model': model.state_dict(), 'optimizer': None}
torch.save(chkpt, 'weights/yolov4.pt')

models.py

....

def load_darknet_weights(self, weights, cutoff=-1):
    # Parses and loads the weights stored in 'weights'

    # Establish cutoffs (load layers between 0 and cutoff. if cutoff = -1 all are loaded)
    file = Path(weights).name
    if file == 'darknet53.conv.74':
        cutoff = 75
    elif file == 'yolov3-tiny.conv.15':
        cutoff = 15

    # Read weights file
    with open(weights, 'rb') as f:
        # Read Header https://github.com/AlexeyAB/darknet/issues/2914#issuecomment-496675346
        self.version = np.fromfile(f, dtype=np.int32, count=3)  # (int32) version info: major, minor, revision
        self.seen = np.fromfile(f, dtype=np.int64, count=1)  # (int64) number of images seen during training

        weights = np.fromfile(f, dtype=np.float32)  # the rest are weights

    ptr = 0
    for i, (mdef, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
        if mdef['type'] == 'convolutional':
            conv = module[0]
            if mdef['batch_normalize']:
                # Load BN bias, weights, running mean and running variance
                bn = module[1]
                nb = bn.bias.numel()  # number of biases
                # Bias
                bn.bias.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.bias))
                ptr += nb
                # Weight
                bn.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.weight))
                ptr += nb
                # Running Mean
                bn.running_mean.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_mean))
                ptr += nb
                # Running Var
                bn.running_var.data.copy_(torch.from_numpy(weights[ptr:ptr + nb]).view_as(bn.running_var))
                ptr += nb
            else:
                # Load conv. bias
                nb = conv.bias.numel()
                conv_b = torch.from_numpy(weights[ptr:ptr + nb]).view_as(conv.bias)
                conv.bias.data.copy_(conv_b)
                ptr += nb
            # Load conv. weights
            nw = conv.weight.numel()  # number of weights
            conv.weight.data.copy_(torch.from_numpy(weights[ptr:ptr + nw]).view_as(conv.weight))
            ptr += nw
Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐