一、JMAK动力学方程下的传质公式推导

\mathbf{S_{m}=k=k_{0}\cdot exp(-\frac{E_{a/d}}{RT})\cdot ln(\frac{p}{^{p_{eq}}})\cdot (\rho ^{sat}-\rho ^{t})}

其中k_{0}是反应常数,E_{a/d}是吸放氢的激活能,p是入口压力,p_{eq}是平衡压力,\rho ^{sat}是吸氢饱和的合金密度,\rho ^{t}是未吸氢的合金密度,假设吸氢后合金密度线性增加。

补充:

已知Avrami方程为\xi =1-exp(-Kt^{n})

因此有:-ln(1-\xi )=(k_{0}t)^{n}, k_{0}^{n}=K

处理下,有:[-ln(1-\xi )]^{\frac{1}{n}}=k_{0}t

两边微分,得:\frac{1}{n}\cdot [-(1-\xi )]\cdot [-ln(1-\xi )]^{\frac{1-n}{n}}\cdot (-d\xi )=k_{0}dt

移项,有:\frac{d\xi }{dt}=k_{0}\cdot n\cdot (1-\xi )\cdot [-ln(1-\xi )]^{\frac{1-n}{n}}

k_{0}=F(p,T),即k_{0}与是压力p和温度T的函数。

如果k_{0}=C_{a}exp(\frac{-E_{a}}{RT})ln(\frac{p}{p_{eq}}),则

\frac{d\xi }{dt}=C_{a}exp(\frac{-E_{a}}{RT})ln(\frac{p}{p_{eq}})\cdot n\cdot (1-\xi )\cdot [-ln(1-\xi )]^{\frac{1-n}{n}}


假设合金是一个个的小球,它们的平均半径为R_{0},体积为V_{0}=\frac{4}{3}\pi R_{0}^{3},数量为I

dt时刻内,氢气扩散dr的距离,且假设扩散的速率v是恒定的,dr=vdt

根据菲克定律,扩散通量J=D\frac{dc}{dx},并假设扩散是颗粒球外表面氢气浓度c_{out}和圆心处氢气浓度c_{in}差异引起的,c_{out}与充氢气压力p_{g}有关,c_{in}则与平衡压力p_{eq}有关,且设dc\sim F(p),即dcp的函数,dx=R_{0},因此有:

dm=(J_{x}A_{x}-J_{x-dr}A_{x-dr})dt,假设J_{x}A_{x}=4\pi R_{0}^{2}\cdot D\frac{dc}{R_{0}}

J_{x-dr}A_{x-dr}=4\pi (R_{0}-dr)^{2}\cdot D\frac{dc}{R_{0}-dr}J_{x}A_{x}-J_{x-dr}A_{x-dr}=4\pi D\cdot dc\cdot dr

所以dm=4\pi D\cdot dc\cdot drdt=4\pi D\cdot dc\cdot v\cdot dt^{2}

由于\frac{J}{\rho }的单位是速度m/s,因此看成\frac{J}{\rho }=v,得到:dm=4\pi D^{2}dc^{2}dt^{2}/(\rho R_{0})

因此吸氢增加的体积(蓝色区域)V_{\beta }=dm/\rho,有:V_{\beta }=4\pi D^{2}dc^{2}dt^{2}/(\rho^{2} R_{0})

因此有V_{ex}= \int_{0}^{t}I\cdot 4\pi D^{2}dc^{2}dt^{2}/(\rho^{2} R_{0}),所以:

-ln(1-\xi )=\frac{V_{ex}}{V_{0}}= I\cdot 2\pi D^{2}dc^{2}t^{2}/(\rho ^{2}R_{0})/(\frac{4}{3}\pi R_{0}^{3})=(\sqrt{\frac{3}{2}}\cdot \frac{IDdc\cdot t}{\rho R_{0}^{2}})^{2}

很多时候扩散系数D与温度T有关,且服从阿伦尼乌斯定律,D=D_{0}exp(\frac{-E_a}{RT}),且将dc\sim F(p)代入,有:-ln(1-\xi )=(\sqrt{\frac{3}{2}}\cdot \frac{ID_{0}exp(\frac{-Ea}{RT})F(p)\cdot t}{\rho R_{0}^{2}})^{2}

C_{a}=\frac{\sqrt{3}ID_{0}}{\sqrt{2}\rho R_{0}^{2}},有-ln(1-\xi )= (C_{a}exp(\frac{-E_a}{RT})\cdot F(p)\cdot t)^{2}

等式右边指数2改为n,有:-ln(1-\xi )= (C_{a}exp(\frac{-E_a}{RT})\cdot F(p)\cdot t)^{n}

F(p)=ln(\frac{p}{p_{eq}}),可推出:\frac{d\xi }{dt}=C_{a}exp(\frac{-E_{a}}{RT})ln(\frac{p}{p_{eq}})\cdot n\cdot (1-\xi )\cdot [-ln(1-\xi )]^{\frac{1-n}{n}}

     

 二、各动力学方程的曲线

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐