关于新闻主题分类任务:目前视频和网上的代码都不能完整的运行,所以从下载数据集开始,重新写一下。

1. 数据集介绍

AG_NEWS 数据集包含4个文件,如下图

 

classes.txt:保存类别

test.csv:测试数据,7600条

train.csv:训练数据,120000条

 2. 对数据集处理

导入包

import torch
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.utils import pad_sequences
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import time
from torch.utils.data.dataset import random_split              # 导入数据随机划分方法工具
import warnings
warnings.filterwarnings('ignore')

读取csv文件

def load_data(csv_file):
    df = pd.read_csv(csv_file, header=None)     # pd默认第一行不读取,所以添加 header
    dataTmep = []

    # 逐行读取,_ 行号,row 内容
    for _, row in df.iterrows():
        label = row[0]
        context = row[1] + row[2]               # 将标题,内容合并
        dataTmep.append((label, context))
    return dataTmep


cutlen = 64
train_dataset = load_data("./data/ag_news_csv/train.csv")
test_dataset = load_data("./data/ag_news_csv/test.csv")

将读取到的文件打包,形成可以读取的dataset,并生成vocab,查看结果

def process_datasets_by_Tokenizer(train_datasets, test_datasets, cutlen=cutlen):
    tokenizer = Tokenizer()

    train_datasets_texts = []
    train_datasets_labels = []
    test_datasets_texts = []
    test_datasets_labels = []

    for index in range(len(train_datasets)):
        train_datasets_labels.append(train_datasets[index][0] - 1)
        train_datasets_texts.append(train_datasets[index][1])

    for index in range(len(test_datasets)):
        test_datasets_labels.append(test_datasets[index][0] - 1)
        test_datasets_texts.append(test_datasets[index][1])

    all_datasets_texts = train_datasets_texts + test_datasets_texts
    all_datasets_labels = train_datasets_labels + test_datasets_labels

    tokenizer.fit_on_texts(all_datasets_texts)

    train_datasets_seqs = tokenizer.texts_to_sequences(train_datasets_texts)
    test_datasets_seqs = tokenizer.texts_to_sequences(test_datasets_texts)

    train_datasets_seqs = pad_sequences(train_datasets_seqs, cutlen)
    test_datasets_seqs = pad_sequences(test_datasets_seqs, cutlen)

    train_datasets = list(zip(train_datasets_seqs, train_datasets_labels))
    test_datasets = list(zip(test_datasets_seqs, test_datasets_labels))

    vocab_size = len(tokenizer.index_word.keys())
    num_class = len(set(all_datasets_labels))
    return train_datasets, test_datasets, vocab_size, num_class, tokenizer


train_datasets, test_datasets, vocab_size, num_class, tokenizer = process_datasets_by_Tokenizer(train_dataset, test_dataset, cutlen=cutlen)

print("查看处理之后的数据: ")
print("train:\n", train_datasets[:2])
print("test:\n", test_datasets[:2])
print("vocab_size = {}, num_class = {}".format(vocab_size, num_class))
print()

3. 构建带有 Embedding 层的文本分类模型

BATCH_SIZE = 16
VOCAB_SIZE = vocab_size                 # 获得整个语料包含的不同词汇总数
NUM_CLASS = num_class                   # 获得类别总数
EMBED_DIM = 128

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class TextSentiment(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        """
        类的初始化函数
        :param vocab_size: 整个语料包含的不同词汇总数
        :param embed_dim: 指定词嵌入的维度
        :param num_class: 文本分类的类别总数
        """
        super().__init__()

        self.embedding = nn.Embedding(vocab_size, embed_dim, sparse=True)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()

    def init_weights(self):
        initrange = 0.5                                                    
        self.embedding.weight.data.uniform_(-initrange, initrange)         
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()                                          

    def forward(self, text):
        """
        逻辑函数
        :param text: 文本数值映射后的结果
        :return: 与类别数尺寸相同的张量,用以判断文本类别
        """
        embedded = self.embedding(text)
        c = embedded.size(0) // BATCH_SIZE
        embedded = embedded[: BATCH_SIZE * c]
        embedded = embedded.transpose(1, 0).unsqueeze(0)
        embedded = F.avg_pool1d(embedded, kernel_size=c)
        return self.fc(embedded[0].transpose(1, 0))


# 实例化模型
model = TextSentiment(VOCAB_SIZE + 1, EMBED_DIM, NUM_CLASS).to(device)

print("查看模型: ")
print(model)
print()

 4. 对数据进行 batch 处理

def generate_batch(batch):
    """
    生成 batch 数据函数
    :param batch: 由样本核对应标签的元组组成的 batch_size 大小的列表,形如[(sample1, label1), (sample2, label2)......]
    :return: 样本张量核标签各自的列表形式 (张量),形如 text = tensor([sample1, sample2....]),label = tensor([label1, label2,...])
    """
    text = []
    label = []
    for item in batch:
        text.extend(item[0])
        label.append(item[1])
    return torch.tensor(text), torch.tensor(label)


# 假设一个输入
print("测试将一个 batch 张量合并: ")
batch = [(torch.tensor([3, 23, 2, 8]), 1), (torch.tensor([3, 45, 21, 6]), 0)]
res = generate_batch(batch)
print(res)
print()

5.构建训练与验证函数

 构建损失函数,优化器等

criterion = torch.nn.CrossEntropyLoss().to(device)                             # 选择损失函数,选择预定义的交叉熵损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=4.0)                        # 选择随机梯度下降优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9)           # 选择优化器步长调节方法 StepLR,用来衰减学习率

定义训练函数

def train(train_data):
    train_loss = 0
    train_acc = 0

    # 使用数据加载器生成 BATCH_SIZE 大小的数据进行批次训练
    data = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=generate_batch)

    for i, (text, cls) in enumerate(data):
        optimizer.zero_grad()                                   
        text = text.to(device)
        cls = cls.to(device)
        output = model(text)                                   
        loss = criterion(output, cls)                           
        train_loss += loss.item()                               # 将该批次的损失加到总损失中
        loss.backward()                                         
        optimizer.step()                                        
        train_acc += (output.argmax(1) == cls).sum().item()     # 将该批次的准去率加到总准确率中 (返回 1 和 0,再被累加)

    scheduler.step()

    # 返回本轮训练的平均损失核平均准确率
    return train_loss / len(train_data), train_acc / len(train_data)

定义预测函数

def valid(test_data):
    loss = 0
    acc = 0

    # 和训练相同,使用 DataLoader 获得训练数据生成器
    data = DataLoader(test_data, batch_size=BATCH_SIZE, collate_fn=generate_batch)

    for text, cls in data:
        with torch.no_grad():
            text = text.to(device)
            cls = cls.to(device)
            output = model(text)                             
            loss = criterion(output, cls)                   
            loss += loss.item()                              # 将损失和准确率加到总损失和准确率中
            acc += (output.argmax(1) == cls).sum().item()

    # 返回本轮验证的平均损失和平均准确率
    return loss / len(test_data), acc / len(test_data)

6. 进行模型训练和验证(调用已经定义的模块)

定义训练信息

N_EPOCHS = 20                                     # 指定训练轮数

train_len = int(len(train_datasets) * 0.95)       # 从 train_datasets 取出 0.95 作为训练集,先取其长度

# 然后使用 random_split 进行乱序划分,得到对应的训练集和验证集
sub_train_, sub_valid_ = random_split(train_datasets, [train_len, len(train_datasets) - train_len])

迭代训练,并打印训练集、验证集的损失函数和准确率

# 开始每一轮训练
for epoch in range(N_EPOCHS):
    start_time = time.time()                                # 记录训练开始的时间

    # 调用 train 和 valid 函数得到训练和验证的平均损失,平均准确率
    train_loss, train_acc = train(sub_train_)
    valid_loss, valid_acc = valid(sub_valid_)

    # 计算训练和验证的总耗时
    secs = int(time.time() - start_time)

    # 用分钟和秒表示
    mins = secs / 60
    secs = secs % 60

    # 打印训练和验证耗时,平均损失,平均准确率
    print('Epoch: %d' % (epoch + 1), " | time in %d minutes, %d seconds" % (mins, secs))
    print(f'\t Loss: {train_loss: .4f}(train) \t | \t Acc: {train_acc * 100: .1f} % (train)')
    print(f'\t Loss: {valid_loss: .4f}(valid) \t | \t Acc: {valid_acc * 100: .1f} % (valid)')

 

7. 用测试集进行测试

valid_loss, valid_acc = valid(test_datasets)
print("测试集上测试: ")
print(f'\t Loss: {valid_loss: .4f}(valid) \t | \t Acc: {valid_acc * 100: .1f} % (valid)')
print()

 

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐