
MiniMind:已开源!只要3小时就能训练一个26M的大模型,教程非常清晰我感觉我又行了!
MiniMind 是一个轻量级的大语言模型项目,让用户可以在个人设备上快速训练和运行GPT模型。该项目可以使用极小的数据和计算资源,在3小时内训练出一个26M的模型,使大模型技术使用更加简单。MiniMind 支持单机单卡和多卡训练,兼容多个流行的框架,并提供完整的代码和文档支持,帮助初学者和研究者快速上手并进行定制和扩展。MiniMind现在总共有5个模型,最小的是26M,已经有不错的对话能力了
AI很火,大模型也很火。
很多人都觉得训练大模型是个很难的事情,包括大部分的程序员自己也搞不出来。而且百亿参数个人设备也达不到训练的要求。
MiniMind的开源,恰好是解决了这个问题。让有一点代码基础的人都能很快训练出自己的大模型,注意,是从0开始训练,不是微调。
只需要3小时,就能从0训练一个26M参数的大模型,模型大小是GPT3的1/7000,而且最低最低2G显卡就能推理。
项目简介
MiniMind 是一个轻量级的大语言模型项目,让用户可以在个人设备上快速训练和运行GPT模型。该项目可以使用极小的数据和计算资源,在3小时内训练出一个26M的模型,使大模型技术使用更加简单。MiniMind 支持单机单卡和多卡训练,兼容多个流行的框架,并提供完整的代码和文档支持,帮助初学者和研究者快速上手并进行定制和扩展。
MiniMind现在总共有5个模型,最小的是26M,已经有不错的对话能力了。
视频介绍
DEMO
我自己也用了下这个模型,对于一些问题的回答上肯定不如千亿模型的效果好,但是也肯定有它的用武之地,比如训练一个对某方面知识及其了解的专家,他只对一个问题非常了解,当然也需要具备基础的大模型能力。
那么如果几千个这样的模型,就是几千个专家,这对一个行业来说,极有可能是回答效果极好的。只需要再有个大模型去给这些专家分配任务并总结,这样对于一个垂直领域大模型来讲,能力绝对是质的提升。
训练步骤
1.环境配置:首先设置Python环境,安装如PyTorch等必要的库。
2.数据准备:下载并预处理训练所需的文本数据,例如从网上获取文本,然后使用提供的脚本进行数据清洗和格式化。
项目作者已经给大家准备好了一些标注好的数据,大家可以直接下载试用
3.模型配置:选择或调整模型的配置,如模型大小和训练参数等。
4.模型训练:使用提供的训练脚本开始训练。根据计算资源,可以调整批量大小和学习率等参数。
5.模型评估与推理:训练完成后,评估模型的性能并使用推理脚本进行测试,查看生成的文本质量。
注意:本文训练步骤只讲述的大体流程,具体的训练步骤可以到Github一步一步跟着做。
项目链接
https://github.com/jingyaogong/minimind
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)