大模型学习路线图

第一阶段:基础知识准备
在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。

\1. 数学基础

  • 线性代数:矩阵运算、向量空间、特征值与特征向量等。
  • 概率统计:随机变量、概率分布、贝叶斯定理等。
  • 微积分:梯度、偏导数、积分等。

学习资料

  • 书籍

    • Gilbert Strang,《线性代数及其应用》
    • Sheldon Ross,《概率论与随机过程》
  • 在线课程

    • Khan Academy 的线性代数和微积分课程
    • Coursera 上的 “Probability and Statistics for Business and Data Science”

\2. 编程基础

  • Python:了解基本的数据结构、控制流以及函数式编程。
  • NumPy:掌握数组操作和数学函数。
  • Matplotlib:学会绘制图表。

学习资料

  • 书籍

    • Mark Lutz,《Learning Python》
  • 在线课程

    • Codecademy 的 Python 课程
    • Udacity 的 “Intro to Programming” 和 “Intro to NumPy”

第二阶段:机器学习基础
这一阶段主要涉及经典机器学习算法的学习,以及如何使用它们解决实际问题。
\1. 机器学习理论

  • 监督学习:线性回归、逻辑回归、决策树、支持向量机、神经网络等。
  • 无监督学习:聚类算法、降维方法(PCA、t-SNE)等。
  • 评估指标:准确率、召回率、F1 分数等。

学习资料

  • 书籍

    • Christopher M. Bishop,《Pattern Recognition and Machine Learning》
    • Trevor Hastie, Robert Tibshirani, Jerome Friedman,《The Elements of Statistical Learning》
  • 在线课程

    • Andrew Ng 在 Coursera 上的 “Machine Learning” 课程
    • Udacity 的 “Intro to Machine Learning with PyTorch”

第三阶段:深度学习入门
在这个阶段,您将学习深度学习的基本概念和框架。
\1. 深度学习基础

  • 神经网络:前馈神经网络、卷积神经网络、循环神经网络等。
  • 训练技巧:反向传播、梯度下降、正则化等。

学习资料

  • 书籍

    • Ian Goodfellow, Yoshua Bengio, Aaron Courville,《Deep Learning》
  • 在线课程

    • deeplearning.ai 的 “Deep Learning Specialization”
    • fast.ai 的 “Practical Deep Learning for Coders”

\2. 深度学习框架

  • PyTorch:动态计算图、自动微分等。
  • TensorFlow:静态计算图、Keras API 等。

学习资料

  • 书籍

    • Francois Chollet,《Deep Learning with Python》
  • 在线课程

    • Udacity 的 “Intro to Deep Learning with PyTorch”
    • TensorFlow 官方文档

第四阶段:自然语言处理基础
本阶段将介绍自然语言处理的基本概念和技术。
\1. NLP 基础

  • 词嵌入:Word2Vec、GloVe 等。
  • 序列模型:RNN、LSTM、GRU 等。

学习资料

  • 书籍

    • Jurafsky & Martin,《Speech and Language Processing》
  • 在线课程

    • Coursera 的 “Natural Language Processing with Deep Learning”

第五阶段:大规模语言模型
这一阶段将重点学习大规模预训练模型。
\1. Transformer 架构

  • 自注意力机制:自我注意层、多头注意力等。
  • Transformer 模型:编码器、解码器等。

学习资料

  • 论文

    • Vaswani et al., “Attention Is All You Need”
  • 在线课程

    • Hugging Face 的 “Transformers: State-of-the-Art Natural Language Processing”

\2. 预训练模型

  • BERT:双向编码器表示。
  • GPT:生成式预训练变换器。
  • T5:基于 Transformer 的文本到文本预训练模型。

学习资料

  • 论文

    • Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”
    • Radford et al., “Language Models are Unsupervised Multitask Learners”
    • Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”
  • 在线课程

    • Hugging Face 的 “State-of-the-Art Natural Language Processing”

第六阶段:大规模模型的应用
在这一阶段,您将学习如何将大规模模型应用于各种实际场景。
\1. 应用实例

  • 文本生成:生成连贯的文章、诗歌等。
  • 对话系统:构建聊天机器人。
  • 机器翻译:实现高质量的自动翻译系统。

学习资料

  • 书籍

    • Alex Johnson,《Large-Scale Language Models: Theory and Applications》
  • 在线课程

    • Hugging Face 的 “Build Your Own AI Assistant”

第七阶段:持续学习与进阶
随着技术的发展,不断更新自己的知识库是非常重要的。
\1. 进阶主题

  • 多模态学习:结合视觉、听觉等多种信息源。
  • 模型优化:模型压缩、量化等。
  • 伦理和社会影响:AI 的公平性、隐私保护等。

学习资料

  • 论文

    • Liu et al., “Useful Knowledge for Language Modeling”
    • Zhang et al., “Understanding Deep Learning Requires Rethinking Generalization”
  • 在线课程

    • MIT 的 “6.S191 Deep Learning” 课程
    • Stanford 的 “CS224N: Natural Language Processing with Deep Learning”
结语

通过以上七个阶段的学习,您将能够建立起对大规模预训练模型的深刻理解,并掌握其在实际应用中的技巧。记得在学习过程中保持好奇心和探索精神,积极尝试新技术并参与社区讨论。希望这份学习路线图能帮助您成功踏上大规模模型的学习之旅!

如果您对某个特定阶段或主题有更详细的问题,欢迎随时提问!

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

有“AI”的1024 = 2048,欢迎大家加入2048 AI社区

更多推荐