采用前后向空间平滑(FBSS)的DOA估计算法(python)
空间平滑算法将等距线阵分为若干个相重叠的子阵列,若子阵列的阵列流形相同,可以使用子阵协方差矩阵求和代替原来的协方差矩阵
·
相干信号会导致信源协方差矩阵秩亏,采用空间平滑算法可以实现降维处理,但是会牺牲阵列的孔径。
这里先采用前后向空间平滑算法解相干,再使用MUSCI算法进行DOA估计。
需要注意的是,在空间平滑之后,新的协方差矩阵的大小是子阵大小,不是原来的协方差矩阵大小。
import numpy as np
import scipy.signal as ss
import scipy.linalg as LA
import matplotlib.pyplot as plt
def awgn(x, snr):
spower = np.sum((np.abs(x) ** 2)) / x.size
x = x + np.sqrt(spower / snr) * (np.random.randn(x.shape[0], x.shape[1]) + 1j * np.random.randn(x.shape[0], x.shape[1]))
return x
derad = np.pi / 180
radeg = 180 / np.pi
d = np.arange(0,3.5,0.5)
theta = np.array([10,30,60]).reshape(1,-1)
n=500
snr = 10
iwave = theta.size
A = np.exp(-1j*2*np.pi*d.reshape(-1,1)@np.sin(theta*derad))
def coherent_signal_Rxx(d, theta, n, snr):
A = np.exp(-1j * 2 * np.pi * d.reshape(-1, 1) @ np.sin(theta * derad))
S = np.random.randn(iwave-1, n)
S = np.concatenate((S[0,:].reshape(1,-1),S), axis=0)
X = A @ S
X = awgn(X, snr)
Rxx = X @ (X.conj().T) / n
return Rxx
def FBSS(Rxx, sub_num, iwave): ##subarray element number
K = Rxx.shape[0]
N = K-sub_num+1
J = np.flip(np.eye(K),axis=0)
crfb = (Rxx + J@(Rxx.T)@J)/2
crs = np.zeros([sub_num,sub_num])
for i in range(N):
crs = crs + crfb[i:i+sub_num,i:i+sub_num]
# crs = crs + Rxx[i:i + sub_num, i:i + sub_num] #FBB
crs = crs/N
D, EV = LA.eig(crs)
index = np.argsort(D) # ascending order index
EN = EV[:, index][:, 0:sub_num - iwave] #
Angles = np.linspace(-np.pi / 2, np.pi / 2, 360)
numAngles = Angles.size
SP = np.empty(numAngles, dtype=complex)
for i in range(numAngles):
a = np.exp(-1j * 2 * np.pi * d.reshape(-1, 1)[0:sub_num] * np.sin(Angles[i]))
SP[i] = ((a.conj().T @ a) / (a.conj().T @ EN @ EN.conj().T @ a))[0, 0]
SP = np.abs(SP)
SPmax = np.max(SP)
SP = 10 * np.log10(SP / SPmax)
x = Angles * radeg
return x, SP
co_Rxx = coherent_signal_Rxx(d=d,theta=theta,n=n,snr=snr)
x, SP = FBSS(Rxx=co_Rxx,sub_num=6,iwave=iwave)
plt.plot(x, SP)
plt.show()
更多推荐
所有评论(0)